Dynamic Allocation Methods: Why the Controversy?

> Greg Pond Ph.D., P.Stat.

Ontario Clinical Oncology Group Department of Oncology Department of Clinical Epidemiology and Biostatistics

11 December 2009

TRENDS IN THE APPLICATION OF DYNAMIC ALLOCATION METHODS IN MULTI-ARM CANCER CLINICAL TRIALS

Gregory R. Pond¹, Patricia A. Tang², Stephen A. Welch³ and Eric X. Chen⁴

¹Ontario Clinical Oncology Group & McMaster University, Hamilton, ON, Canada, ²Tom Baker Cancer Centre, Calgary, AB, Canada, ³London Health Sciences Centre, London, ON, Canada, ⁴Princess Margaret Hospital, Toronto, ON, Canada

> *Presented at ASCO 2009, submitted for publication McMaster University

> > HEALTH SCIENCES

Outline

- 1. My interest in DA methods
- 2. Review of DA methods
- 3. Why the controversy?
- 4. Use of DA in oncology
- 5. Concluding thoughts

My Interest in DA

- •Planned to use minimization for future protocol
- •Minimization = specific form of dynamic allocation (DA)
- •~300 patients
- •3 strata; 2 binary and centre (6 centres)
- •300/24 cells ~ 12-13 patients per cell

My Interest in DA

- •Which technique to use?
- •Asked colleagues both at OCOG and elsewhere (NCIC, CR-UK, EORTC)
- •No consensus, no policy

Literature Review

•Lee & Feng (2005): Rand. phase II in cancer – 2.3% of trials used DA

- •Altman & Dore (1990), all diseases 1.3%
- •Scott et al(2002), 4% in Lancet, NEJM;

•Others 'infrequently used', 'little used' and 'use ... limited due to the administrative burden and concerns about the validity...'

Anecdotally

•Commonly used (NCIC, OCOG, EORTC, CR-UK)?

•Was oncology different?

•What 'concerns' about the validity of DA?

•Aimed to better understand DA

What is DA?

method for allocating patients to treatment in multi-arm clinical trials
minimization – Taves (1974)
family of DA methods – Pocock & Simon (1975)

•minimize imbalances between treat. arms

Example of Minimization

- hypothetical 2-arm trial in breast cancer
- 3 prognostic factors (strata), Her2-neu status, menopausal status and disease stage
- 19 patients on study and want to allocate (randomize) 20th

Summary of first 19 pts

Predictor		Arm A (n=10)	Arm B (n=9)
Her2-neu Status	+ve : -ve	5:5	6:3
Menopausal Status	Pre-/peri- : Post-	4:6	5:4
Stage	Early : Late	7:3	2:7

McMaster University HEALTH SCIENCES

Example of Minimization

• 20th patient is Her2-neu positive, postmenopausal with late-stage disease

Predictor		Arm A (n=10)	Arm B (n=9)
Her2-neu Status	+ve : -ve	5:5	6:3
Menopausal Status	Pre-/peri- : Post-	4:6	5:4
Stage	Early : Late	7:3	2:7

- If pt 20 allocated to A =>
 (5+1)=6 Her2-neu+, (6+1)=7 postmenopausal and (3+1)=4 late stage pts receiving A
- If pt 20 allocated to B => (6+1)=7, (4+1)=5, (7+1)=8 pts receiving B
- 6+7+4 = 17 < 20 = 7+5+8
- Allocate to A

Variations

- different measures of 'imbalance' range, variance, imbalance score (counts/allocation ratio)
- weight factors
- balanced coin allocate w/ probability p
- minimization is deterministic (p=1)
- vary *p* depending on level of imbalance

Controversy

- non-random, primarily deterministic
- if 1st 2 patients identical characteristics
- pt 1 randomly assigned to A
- pt 2 allocated to B with prob.=1 (or p)
- prob(pts 1 & 2 receive A)=0 (or .5*(1-*p*))
- prob(pts 1 & 2 receive A)=.25 if random

Controversy

- Statistical tests (Cox, Kaplan-Meier, ttests) based on *random allocation*
- Effect of non-random allocation is unknown

Patient ID	Treatment Received	Outcome
1	А	1
2	В	7
3	В	4
4	А	6
5	В	8
6	В	3
7	А	2
8	А	5

70 ways of selecting 4 pts to A 12 outcomes as extreme or more p-value = 12*1/70*2 = 0.34

Prognostic Factor	Treatment Received	Outcome
+	А	1
_	В	7
+	В	4
_	А	6
_	В	8
+	В	3
+	А	2
-	А	5

Wilcoxon rank-sum test (p=0.34) OLS - adjust for PF (p=0.007)

Prognostic Factor	Treatment Received	Outcome
+	А	1
_	В	7
+	В	4
_	А	6
_	В	8
+	В	3
+	А	2
_	А	5

StRS: 6 permutations for +/-, 6*6=36 1/36=0.0278 (2-sided p=0.0556) McMaster University

HEALTH SCIENCES

Patient ID	Prognostic Factor	Outcome
1	+	1
2	_	7
3	+	4
4	_	б
5	_	8
б	+	3
7	+	2
8	_	5

min: 4 permutations for +/-, 4*4=161/16=0.0625(2-sided p=0.13) McMaster University HEALTH SCIENCES

Example

- Wilcoxon rank sum, p-value=0.34 OLS, adjusting for PF, p-value=0.007
- permutation test, Stratified RS, p-value=0.056
- Permutation test, minimization, p-value=0.13

Authorities

- Committee for Propriety Medicinal Products (2003) 'strongly advised' researchers to avoid DA methods
- FDA not adverse, but often (anecdotally) require permutation tests to be performed

However...

- stratified block sampling (StRS) not random but accepted by authorities
- e.g. blocks of size 4 => allocation of every 4th patient strictly determined
- Can accrual of patients to trial can be considered 'random'?

Controversy 2

- can predict treatment of next patient
- true if know characteristics and treatment of all patients, at all sites, previously enrolled
- Hills et al. '>60% predictability if site included as factor'
- ~50% predictability if site not included McMaster

University

Solution

- Brown et al add random element of 0.8
- reduces predictability to 'acceptable rates' (0.50-0.56) even with site as factor

note that with StRS (block size 4):
 every 4th pt deterministic
 predictability =0.667

Controversy 3

- costly, administrative burden
- extensive programming
- CPMP observed many programming, implementation errors
- careful programming, use internet anyways, little added cost nowadays

Controversy 4

- can always statistically adjust for prognostic factors => no need for DA
- true but univariate analysis 'more impactful'
- ease of interpretability

Why use DA?

• Buyse & McEntegart:

"The argument is (about) the protection that balance affords the trial from criticism (whether ill-informed or not) ... The CPMP (notes) in the case of a 'very strong baseline imbalance, no adjustment may be sufficiently convincing to restore the results.' Such imbalances are unlikely, but this is of little comfort to the trialist who experiences one!"

Why use DA?

- balance site costs avoid one site with all pts allocated to expensive treatment
- increased (minimal) power due to balance
- increased persuasiveness of results
- effect of univariate K-M curves

My dilemma

- should I use DA?
- Con: concerns re: validity / predictability
- infrequently used
- susceptible to mistakes and not needed
- Pro: balanced design
- increased credibility
- balance site costs

Nagging doubt

- anecdotally accepted and common
- previous reviews older, not cancerspecific, or for RP2 (i.e. relatively smaller sample sizes, possibly less rigor)

Aha!!!

• co-author on article:

predictors of better journal publication (IF) for large, multi-arm cancer clinical trials 1995-2005

A) review to determine frequency of DA useB) does use of DA predict publication in higher IF journal?

a priori hypothesis

• hypothesis:

if balanced trials are more persuasive

=> use of DA => more persuasive results
=> authors submit to higher IF journals
& reviewers more readily accept

• H0: DA use is associated with publication in higher IF journals

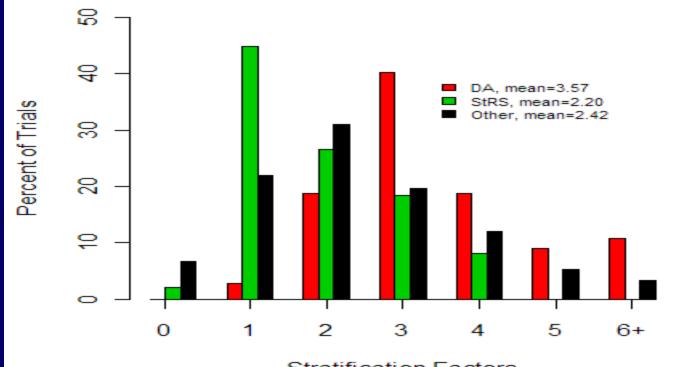
Methods

- multi-arm cancer clinical trials published in 1995-2005 in journal with IF >3
- ≥100 patients / arm
- excluded pediatric (<18 years old), palliative, supportive care, and prevention trials, meta-analyses, overviews, summaries of 2+ previous trials or updates of previous trials
- use of DA or StRS methods & other allocation factors (e.g. # of strata)

Results

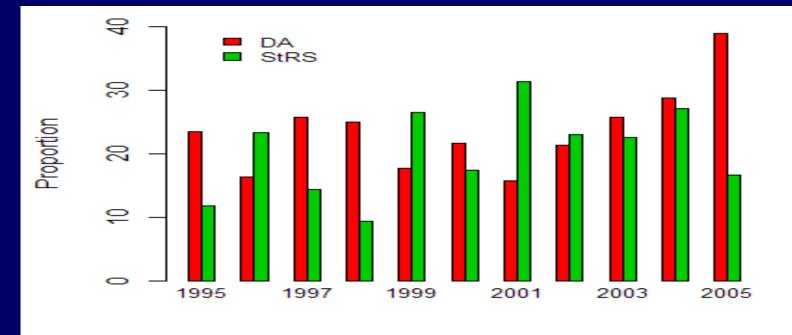
- 476 total trials
- IF<10: Ann Onc, Ann Surg Onc, BJC, Breast Can Res Treat, Clin Can Res, EJC, IJROBP, Leukemia (n=109)
- IF 10-20: JCO, JNCI (n=261)
- IF>20: JAMA, Lancet, and NEJM (n=106)

Results


- 112 (23.5%) reported using DA

 reported full description of
 methodology
- 103 (21.6%) reported using StRS 45 reported block size
- 261 (54.8%) reported neither

- 403 (84.7%) reported ≥1 stratification factor (including site)
- 16 (3.4%) reported using 0 factors
- 57 (12.0%) did not mention stratification



Stratification Factors

figure 1. number of stratification factors

McMaster University HEALTH SCIENCES

Year

figure 2. frequency of use over time

- mean number of stratification factors in trials using DA was greater than non-DA trials (3.57 vs 2.36 – p<0.001)
- trend towards increased use of DA methods over time (p=0.071)
- no association observed between time and reported StRS use (p=0.23)

Hematological Other Common Chemo +/- MTA Non-chemo Adjuvant	34 158 284 292 184	6 (17.7) 41 (26.0) 65 (22.9) 71 (24.3)	2 (5.9) 39 (24.7) 62 (21.8)	<mark>26 (76.5)</mark> 78 (49.4) 157 (55.3)	0.053
Non-chemo Adjuvant		71 (24.3)			
		41 (22.3)	59 (20.2) 44 (23.9)	162 (55.5) 99 (53.8)	0.60
Non-adjuvant	207 269	52 (25.1) 60 (22.3)	62 (30.0) 41 (15.2)	93 (44.9) 168 (62.5)	<0.001
Industry	183	44 (24.0)	36 (19.7)	103 (56.3)	0.72
Non-industry	293	68 (23.2)	67 (22.9)	158 (53.9)	
North America	132	26 (19.7)	24 (18.2)	82 (62.1)	0.32
European	252	66 (26.2)	58 (23.0)	128 (50.8)	
ıltinational/Other	92	20 (21.7)	21 (22.8)	51 (55.4)	
Overall survival	221	66 (29.9)	34 (15.4)	121 (54.8)	<0.001
Other	255	46 (18.0)	69 (27.1)	140 (54.9)	
No	338	75 (22.2)	76 (22.5)	187 (55.3)	0.52
Yes	138	37 (26.8)	27 (19.6)	74 (53.6)	
Included	406	101 (24.9)	95 (23.4)	210 (51.7)	0.004
Not included	70	11 (15.7)	8 (11.4)	51 (72.9)	
ITT	360	92 (25.6)	88 (24.4)	180 (50.0)	<0.001
Non	116	20 (17.2)	15 (12.9)	81 (69.8)	
Yes	44	13 (29.6)	12 (27.3)	19 (43.2)	0.28
No	432	99 (22.9)	91 (21.1)	242 (56.0)	
Positive	162	32 (19.8)	44 (27.2)	86 (53.1)	0.073
Not positive	283	72 (25.4)	52 (18.4)	159 (56.2)	
<300 300-499 500-749 750-999 1000+	128 171 81 36 60	32 (25.0) 28 (16.4) 20 (24.7) 7 (19.4) 16 (26.7)	23 (18.0) 36 (21.1) 19 (23.5) 12 (33.3) 22 (36.7)	73 (57.0) 107 (62.6) 42 (51.9) 17 (47.2) 22 (36.7)	0.006 McMas University
	<300 300-499 500-749	<300128300-499171500-74981750-99936	<300 128 32 (25.0) 300-499 171 28 (16.4) 500-749 81 20 (24.7) 750-999 36 7 (19.4)	<300 128 32 (25.0) 23 (18.0) 300-499 171 28 (16.4) 36 (21.1) 500-749 81 20 (24.7) 19 (23.5) 750-999 36 7 (19.4) 12 (33.3)	<30012832 (25.0)23 (18.0)73 (57.0)300-49917128 (16.4)36 (21.1)107 (62.6)500-7498120 (24.7)19 (23.5)42 (51.9)750-999367 (19.4)12 (33.3)17 (47.2)

Table 2. Summary of trial-specific characteristics

- allocation method associated with:
- purpose of therapy (adjuvant vs non-adj)
- primary outcome (OS vs other)
- SS calculation reported (yes vs no)
- analysis method (ITT vs other)
- trial SS

- Better written trials associated with higher reported use of DA
- If used OS as primary outcome, SS calculation described, used ITT => more likely to report using DA
- positive trials less likely to report using DA & more likely StRS (p=0.073)
 McMaster

University

figure 3. frequency of use by journal IF

	Low (IF <10)	Middle (IF 10-20)	High (IF >20)
Ν	106	261	109
DA StRS Neither	18 (17.0%) 22 (20.8%) 66 (62.3%)	60 (23.0%) 59 (22.6%) 142 (54.4%)	34 (31.2%) 22 (20.2%) 53 (48.6%)
			McMaster University

HEALTH SCIENCES

- allocation method significantly associated with journal IF (p=0.039)
- OR was 1.75 (95% CI: 1.14-2.68) for DA versus no allocation method (p=0.024)
- OR was 1.16 (95% CI: 0.74-1.79) for StRS versus no allocation method (p=0.54)

- adjusted for study outcome, SS, ITT, geographic region, purpose of therapy, time to publication, tumor type and SS calculation described
- allocation method remained significant as predictor of journal IF (p=0.039)
- OR: 1.55 (95% CI: 0.94-2.55) for DA versus no allocation method (p=0.015)
- OR: 0.72 (95% CI: 0.42-1.21) for StRS vs no allocation method (p=0.033)
 McMaster

University

Conclusions

- DA methods frequent in cancer trials
- manuscripts in higher IF journals reported DA methods more frequently
- other measures of quality also associated with reporting of DA use
- adjusting for other measures, reported DA use remained a predictor of publication in higher IF journals

Personal Opinion

- DA appears acceptable
- need better reporting of methodology
- using DA ≠ higher IF journal publication
- better written article => more likely to describe allocation method
 & be positively reviewed

- StRS negatively associated w/ journal IF
- positive trials reported using DA less often, and StRS more often
- Does it relate to impact of results?

References

- D.R. Taves "Minimization: A new method of assigning patients to treatment and control groups." *Clinical Pharmacology and Therapeutics*, **15:** 443-453; 1974.
- S.J. Pocock and R. Simon. "Sequential treatment assignment with balancing for prognostic factors in the controlled clinical trial." *Biometrics*, **31**: 103-115, 1975.
- Committee for Proprietary Medicinal Products. Points to Consider on Adjustment for Baseline Covariates. CPMP/EWP/2863/99, 2003. Available from <u>http://www.emea.europa.eu/pdfs/human/ewp/286399en.pdf</u> (extracted 7 January 2009).
- M. Buyse and D.J. McEntegart. "Achieving balance in clinical trials: An unbalanced view from the European regulators." *Applied Clinical Trials*, **13(5)**: 36-40; May 2004.
- N.W. Scott, G.C. McPherson, C.R. Ramsay and M.K. Campbell. "The method of minimization for allocation to clinical trials: A review." *Controlled Clinical Trials*, 23: 662-674; 2002.

McMaster

 S. Brown, H. Thorpe, K. Hawkins and J. Brown. "Minimization – reducingersity predictability for multi-centre trials whilst retaining balance within centre and sciences Statistics in Medicine, 24: 3715-3727; December 2005.

References

- B. Efron. "Forcing a sequential experiment to be balanced." *Biometrika*, **58(3)**: 403-417; December 1971.
- R. Hills, R. Gray and K. Wheatley. "High probability of guessing next treatment allocation with minimisation by clinician." *Controlled Clinical Trials*, **24:** 70S, June 2003.
- D.G. Altman and C.J.Dore. "Randomisation and baseline comparisons in clinical trials." *Lancet*, **335:** 149-153; 1990.
- J.J. Lee and L. Feng. "Randomized phase II designs in cancer clinical trials: Current status and future directions." *Journal of Clinical Oncology*, **23(19):** 4450-4457; 2005.

